89 research outputs found

    GMES-service for assessing and monitoring subsidence hazards in coastal lowland areas around Europe. SubCoast D3.5.1

    Get PDF
    This document is version two of the user requirements for SubCoast work package 3.5, it is SubCoast deliverable 3.5.1. Work package 3.5 aims to provide a European integrated GIS product on subsidence and relative sea level rise. The first step of this process was to contact the European Environment Agency as the main user to discover their user requirements. This document presents these requirments, the outline methodology that will be used to carry out the integration and the datasets that will be used. In outline the main user requirements of the EEA are: 1. Gridded approach using an Inspire compliant grid 2. The grid would hold data on: a. Likely rate of subsidence b. RSLR c. Impact (Vulnerability) d. Certainty (confidence map) e. Contribution of ground motion to RSLR f. A measure of certainty in the data provided g. Metadata 3. Spatial Coverage - Ideally entire coastline of all 37 member states a. Spatial resolution - 1km 4. Provide a measure of the degree of contribution of ground motion to RSLR The European integration will be based around a GIS methodology. Datasets will be integrated and interpreted to provide information on data vlues above. The main value being a likelyhood of Subsidence. This product will initially be developed at it’s lowest level of detail for the London area. BGS have a wealth of data for london this will enable this less detialed product to be validated and also enable the generation of a more detailed product usig the best data availible. One the methodology has been developed it will be pushed out to other areas of the ewuropean coastline. The initial input data that have been reviewed for their suitability for the European integration are listed below. Thesea re the datasets that have European wide availibility, It is expected that more detailed datasets will be used in areas where they are avaiilble. 1. Terrafirma Data 2. One Geology 3. One Geology Europe 4. Population Density (Geoland2) 5. The Urban Atlas (Geoland2) 6. Elevation Data a. SRTM b. GDEM c. GTOPO 30 d. NextMap Europe 7. MyOceans Sea Level Data 8. Storm Surge Locations 9. European Environment Agencya. Elevation breakdown 1km b. Corine Land Cover 2000 (CLC2000) coastline c. Sediment Discharges d. Shoreline e. Maritime Boundaries f. Hydrodynamics and Sea Level Rise g. Geomorphology, Geology, Erosion Trends and Coastal Defence Works h. Corine land cover 1990 i. Five metre elevation contour line 10. FutureCoas

    Environmental baseline monitoring for shale-gas development: insights for monitoring ground motion using InSAR analysis

    Get PDF
    Shale gas operations can be contentious, with a degree of uncertainty regarding the effects that they may, or may not, have on the environment. Several countries have moratoria on hydraulic fracturing until its potential effects can be understood better. One area of debate is whether operations could cause ground motion at the surface. This research monitored ground motion prior to operations and compared that baseline to the situation during and after shale gas operations. The test sites are the Vale of Pickering (North Yorkshire) and the Fylde (Lancashire) in the UK. Planning permission was granted in May 2016 to undertake hydraulic fracturing near Kirby Misperton (Vale of Pickering) and in August 2018 at Preston New Road in Lancashire. Hydraulic fracturing has only taken place at Lancashire as it was the only site to also get the hydraulic fracturing plan approved. Complementary Interferometric Synthetic Aperture Radar (InSAR) techniques were used to process archive and current satellite images to detect relative ground motion with millimetric accuracy in rural and semi-urban landcover. The SBAS, ISBAS and RapidSAR processing for the period from 1992 to 2019 (extending 24 years prior to hydraulic fracturing) identified broad regions with little or no surface motion, along with discrete zones of uplift or subsidence. Analysis of the average velocities and time-series data revealed that the motion, where it occurred, related to factors including compressible ground, groundwater abstraction and underground coal mining. This research concluded that the shale gas operations in Lancashire did not alter the baseline ground motion dynamics to date, as detected by InSAR. The successful application of InSAR for detecting and monitoring ground motion at shale gas sites in rural landcover in the UK, where radar coherence has traditionally been a major challenge, serves as a precedent for other regions where baseline monitoring is required

    Nationwide monitoring of geohazards in Great Britain with InSAR: feasibility mapping based on ERS-1/2 and ENVISAT imagery

    Get PDF
    We model terrain visibility and topographic distortions to the ERS-1/2 SAR and ENVISAT ASAR IS2 satellite acquisition modes in Great Britain using the 5m NEXTMap DTM. Predictions of Persistent Scatterers (PS) densities identifiable over the landmass are drawn using the CORINE Land Cover 2006 dataset which is calibrated based on 6 PS datasets available for various areas of the UK. InSAR feasibility to monitor ground motions is discussed through the example of the Manchester area, with particular regard to landslide deposits in the Peak District

    The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK

    Get PDF
    Satellite radar interferometry is a well-documented technique for the characterisation of ground motions over large spatial areas. However, the measurement density is often constrained by the land use, with best results obtained over urban and semi urban areas. We use an implementation of the Small Baseline Subset (SBAS) methodology, whereby areas exhibiting intermittent coherence are considered alongside those displaying full coherence, in the final result, to characterise the ground motion over the South Wales Coalfield, United Kingdom. 55 ERS-1/2 Synthetic Aperture Radar (SAR) C-band images for the period between 1992 and 1999 are processed using the ISBAS (Intermittent Small BAseline Subset) technique, which provides 3.4 times more targets, with associated measurements than a standard SBAS implementation. The dominant feature of the observed motions is a relatively large spatial area of uplift. Uplift rates are as much as 1 cm/yr. and are centred on the part of the coalfield which was most recently exploited. Geological interpretation reveals that this uplift is most likely a result of mine water rebound. Collieries in this part of the coalfield required a ground water to be pumped to enable safe coal extraction; following their closure pumping activity ceased allowing the water levels to return to equilibrium. The ISBAS technique offers significant improvements in measurement density ensuring an increase in detection of surface motions and enabling easier interpretation

    Remote landslide mapping, field validation and model development – An example from Kravarsko, Croatia

    Get PDF
    The Kravarsko settlement area, in northern Croatia, has multiple landslides and damage to buildings and infrastructure caused by landslides. However, actual landslide investigation data for the wider Kravarsko area (pilot area PA1) is relatively sparse and no landslide inventory or typical landslide model exists. The aim of this research was to develop such a landslide inventory by integrating new approaches in geohazard research such as remote landslide mapping from high resolution digital elevation models (DEMs) and current and historical aerial images with existing and new geological data related to landslides. The conclusion is that detailed DEMs are more than adequate for the development of reliable landslide inventories but field checks are still necessary to account for the specific set of natural and man-made conditions found in the research area. The landslide inventory developed for Kravarsko has been field validated in a smaller validation area (VA1) and a typical simplified landslide model for PA1/VA1 was developed. Within the model, sliding is interpreted as complex with multiple generations of sliding and multiple sliding surfaces. Based on the analysis undertaken and the available field data, around 10-20% of urban structures are endangered in the Kravarsko area and anthropogenic activity was determined as an important landslide triggering factor for landslide activation or reactivation. Still the question remains of how to quantify the anthropogenic influence? The developed landslide inventory for PA1/VA1 could be used for local urban planning/development and endangerment assessment/evaluation

    Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery

    Get PDF
    We assess the feasibility of monitoring the landmass of Great Britain with satellite Synthetic Aperture Radar (SAR) imagery, by analysing ERS-1/2 SAR and ENVISAT IS2 Advanced SAR (ASAR) archive data availability, geometric distortions and land cover control on the success of (non-)interferometric analyses. Our assessment both addresses the scientific and operational question of whether a nationwide SAR-based monitoring of ground motion would succeed in Great Britain, and helps to understand controlling factors and possible solutions to overcome the limitations of undertaking SAR-based imaging of the landmass. This is the first time such a nationwide assessment is performed in preparation for acquisition and processing of SAR data in the United Kingdom, and any other country in the world. Analysis of the ERS-1/2 and ENVISAT archives reveals potential for multi-interferogram SAR Interferometry (InSAR) for the entirety of Britain using ERS-1/2 in descending mode, with 100% standard image frames showing at least 20 archive scenes available. ERS-1/2 ascending and both ENVISAT modes show potential for non-interferometric and single-pair InSAR for the vast majority of Britain, and multi-interferogram only for 13% to 38% of the available standard frames. Based on NEXTMap¼ Britain Digital Terrain Model (DTM) we simulate SAR layover, foreshortening and shadow to the ERS-1/2 and ENVISAT Lines-Of-Sight (LOS), and quantify changes of SAR distortions with variations in mode, LOS incidence angles and ground track angles, local terrain orientation, and the effect of scale due to the input DTM resolution. The simulation is extended to the ~ 230,000 km2 landmass, and shows limited control of local topography on the radar terrain visibility. According to the 50 m to 5 m DTM-based simulations, ~ 1.0–1.4% of Great Britain could potentially be affected by shadow and layover in each mode. Only ~ 0.02–0.04% overlapping between ascending and descending mode distortions is found, this indicating the negligible proportion of the landmass that cannot be monitored using either imaging mode. We calibrate the CORINE Land Cover 2006 (CLC2006) using Persistent Scatterer (PS) datasets available for London, Stoke-On-Trent, Newcastle and Bristol, to quantify land cover control on the PS distribution and characterise the CLC2006 classes in terms of the potential PS density they could provide. Despite predominance of rural land cover types, we predict potential for over 12.8 M monitoring targets for each acquisition mode using a set of image frames covering the entire landmass. We validate our assessment by processing with the Interferometric Point Target Analysis (IPTA) 55 ERS-1/2 SAR scenes depicting South Wales between 1992 and 1999. Although absolute differences between predicted and observed target density are revealed, relative densities and rankings among the various CLC2006 classes are found constant across the calibration and validation datasets. Rescaled predictions for Britain show potential for a total of 2.5 M monitoring targets across the landmass. We examine the use of the topographic and land cover feasibility maps for landslide studies in relation to the British Geological Survey's National Landslide Database and DiGMapGB mass movement layer. Building upon recent literature, we finally discuss future perspectives relating to the replication of our feasibility assessment to account for higher resolution SAR imagery, new Earth explorers (e.g., Sentinel-1) and improved processing techniques, showing potential to generate invaluable sources of information on land motions and geohazards in Great Britai

    Natural and anthropogenic geohazards in Greater London observed from geological and ERS-1/2 and ENVISAT Persistent Scatterers ground motion data: results from the EC FP7-SPACE PanGeo Project

    Get PDF
    We combine geological data and ground motion estimates from satellite ERS-1/2 and ENVISAT persistent scatterer interferometry (PSI) to delineate areas of observed natural and anthropogenic geohazards in the administrative area of Greater London (United Kingdom). This analysis was performed within the framework of the EC FP7-SPACE PanGeo project, and by conforming to the interpretation and geohazard mapping methodology extensively described in the Production Manual (cf. http://www.pangeoproject.eu). We discuss the results of the generation of the PanGeo digital geohazard mapping product for Greater London, and analyse the potential of PSI, geological data and the PanGeo methodology to identify areas of observed geohazards. Based on the analysis of PSI ground motion data sets for the years 1992–2000 and 2002–2010 and geology field campaigns, we identify 25 geohazard polygons, covering a total of ~650 km2. These include not only natural processes such as compaction of deposits on the River Thames flood plain and slope instability, but also anthropogenic instability due to groundwater management and changes in the Chalk aquifer, recent engineering works such as those for the Jubilee Line Extension project and electricity tunnelling in proximity to the River Thames, and the presence of made ground. In many instances, natural and anthropogenic observed geohazards overlap, therefore indicating interaction of different processes over the same areas. In terms of ground area covered, the dominant geohazard is anthropogenic land subsidence caused by groundwater abstraction for a total of ~300 km2, followed by natural compression of River Thames sediments over ~105 km2. Observed ground motions along the satellite line-of-sight are as high as +29.5 and −25.3 mm/year, and indicate a combination of land surface processes comprising ground subsidence and uplift, as well as downslope movements. Across the areas of observed geohazards, urban land cover types from the Copernicus (formerly GMES) EEA European Urban Atlas, e.g., continuous and discontinuous urban fabric and industrial units, show the highest average velocities away from the satellite sensor, and the smallest standard deviations (~0.7–1.0 mm/year). More rural land cover types such as agricultural, semi-natural and green areas reveal the highest spatial variability (up to ~4.4 mm/year), thus suggesting greater heterogeneity of observed motion rates within these land cover types. Areas of observed motion in the PSI data for which a geological interpretation cannot be found with sufficient degree of certainty are also identified, and their possible causes discussed. Although present in Greater London, some geohazard types such as shrink–swell clays and ground dissolution are not highlighted by the interpretation of PSI annual motion rates. Reasons for absence of evidence of the latter in the PSI data are discussed, together with difficulties related to the identification of good radar scatterers in landsliding areas

    A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data

    Get PDF
    This paper presents a methodology to exploit the Persistent Scatterer Interferometry (PSI) time series acquired by Sentinel-1 sensors for the detection and characterization of uplift phenomena in urban areas. The methodology has been applied to the Tower Hamlets Council area of London (United Kingdom) using Sentinel-1 data covering the period 2015–2017. The test area is a representative high-urbanized site affected by geohazards due to natural processes such as compaction of recent deposits, and also anthropogenic causes due to groundwater management and engineering works. The methodology has allowed the detection and characterization of a 5 km2 area recording average uplift rates of 7 mm/year and a maximum rate of 18 mm/year in the period May 2015–March 2017. Furthermore, the analysis of the Sentinel-1 time series highlights that starting from August 2016 uplift rates began to decrease. A comparison between the uplift rates and urban developments as well as geological, geotechnical, and hydrogeological factors suggests that the ground displacements occur in a particular geological context and are mainly attributed to the swelling of clayey soils. The detected uplift could be attributed to a transient effect of the groundwater rebound after completion of dewatering works for the recent underground constructions

    Assessing the feasibility of a National InSAR Ground Deformation Map of Great Britain with Sentinel-1

    Get PDF
    This work assesses the feasibility of national ground deformation monitoring of Great Britain using synthetic aperture radar (SAR) imagery acquired by Copernicus’ Sentinel-1 constellation and interferometric SAR (InSAR) analyses. As of December 2016, the assessment reveals that, since May 2015, more than 250 interferometric wide (IW) swath products have been acquired on average every month by the constellation at regular revisit cycles for the entirety of Great Britain. A simulation of radar distortions (layover, foreshortening, and shadow) confirms that topographic constraints have a limited effect on SAR visibility of the landmass and, despite the predominance of rural land cover types, there is potential for over 22,000,000 intermittent small baseline subset (ISBAS) monitoring targets for each acquisition geometry (ascending and descending) using a set of IW image frames covering the entire landmass. Finally, InSAR results derived through ISBAS processing of the Doncaster area with an increasing amount of Sentinel-1 IW scenes reveal a consistent decrease of standard deviation of InSAR velocities from 6 mm/year to ≀2 mm/year. Such results can be integrated with geological and geohazard susceptibility data and provide key information to inform the government, other institutions and the public on the stability of the landmas

    Identifying natural and anthropogenically-induced geohazards from satellite ground motion and geospatial data: Stoke-on-Trent, UK

    Get PDF
    Determining the location and nature of hazardous ground motion resulting from natural and anthropogenic processes such as landslides, tectonic movement and mining is essential for hazard mitigation and sustainable resource use. Ground motion estimates from satellite ERS-1/2 persistent scatterer interferometry (PSI) were combined with geospatial data to identify areas of observed geohazards in Stoke-on-Trent, UK. This investigation was performed within the framework of the EC FP7-SPACE PanGeo project which aimed to provide free and open access to geohazard information for 52 urban areas across Europe. Geohazards identified within the city of Stoke-on-Trent and neighbouring rural areas are presented here alongside an examination of the PanGeo methodology. A total of 14 areas experiencing ground instability caused by natural and anthropogenic processes have been defined, covering 122.35 km2. These are attributed to a range of geohazards, including landslides, ground dissolution, made ground and mining activities. The dominant geohazard (by area) is ground movement caused by post-mining groundwater recharge and mining-related subsidence (93.19% of total geohazard area), followed by landsliding (5.81%). Observed ground motions along the satellite line-of-sight reach maxima of +35.23 mm/yr and −22.57 mm/yr. A combination of uplift, subsidence and downslope movement is displayed. ‘Construction sites’ and ‘continuous urban fabric’ (European Urban Atlas land use types) form the land uses most affected (by area) by ground motion and ‘discontinuous very low density urban fabric’ the least. Areas of ‘continuous urban fabric’ also show the highest average velocity towards the satellite (5.08 mm/yr) and the highest PS densities (1262.92 points/km2) along with one of the lowest standard deviations. Rural land uses tend to result in lower PS densities and higher standard deviations, a consequence of fewer suitable reflectors in these regions. PSI is also limited in its ability to identify especially rapid ground motion. As a consequence the supporting geospatial data proved especially useful for the identification of landslides and some areas of ground dissolution. The mapped areas of instability are also compared with modelled potential geohazards (the BGS GeoSure dataset)
    • 

    corecore